32 research outputs found

    Validity of physical activity monitors during daily life in patients with COPD.

    Get PDF
    Symptoms during physical activity (PA) and physical inactivity are COPD. Our aim was to evaluate the validity and usability of six activity in patients with COPD against the doubly labelled water (DLW) indirect calorimetry method.Eighty COPD patients (age 68+/-6 years, FEV1 57+/-19% predicted) recruited in four centres each wore simultaneously three or six commercially available monitors validated in chronic conditions for consecutive days. A priori validity criteria were defined. These ability to explain total energy expenditure (TEE) variance through regression analysis, using TEE as the dependent variable with total body (TBW) plus several PA monitors outputs as independent variables; and with DLW measured activity energy expenditure (AEE).The Actigraph GT3X DynaPort MoveMonitor best explained the majority of the TEE variance not explained by TBW (53% and 70% respectively) and showed the most correlations with AEE (r=0.71 p<0.001, r=0.70 p<0.0001, of this study should guide users in choosing valid activity monitors for or for clinical use in patients with chronic diseases such as COPD

    Laboratory and free-living gait performance in adults with COPD and healthy controls

    Get PDF
    Background Gait characteristics are important risk factors for falls, hospitalisations and mortality in older adults, but the impact of COPD on gait performance remains unclear. We aimed to identify differences in gait characteristics between adults with COPD and healthy age-matched controls during 1) laboratory tests that included complex movements and obstacles, 2) simulated daily-life activities (supervised) and 3) free-living daily-life activities (unsupervised). Methods This case–control study used a multi-sensor wearable system (INDIP) to obtain seven gait characteristics for each walking bout performed by adults with mild-to-severe COPD (n=17; forced expiratory volume in 1 s 57±19% predicted) and controls (n=20) during laboratory tests, and during simulated and free-living daily-life activities. Gait characteristics were compared between adults with COPD and healthy controls for all walking bouts combined, and for shorter (≤30 s) and longer (>30 s) walking bouts separately. Results Slower walking speed (−11 cm·s−1, 95% CI: −20 to −3) and lower cadence (−6.6 steps·min−1, 95% CI: −12.3 to −0.9) were recorded in adults with COPD compared to healthy controls during longer (>30 s) free-living walking bouts, but not during shorter (≤30 s) walking bouts in either laboratory or free-living settings. Double support duration and gait variability measures were generally comparable between the two groups. Conclusion Gait impairment of adults with mild-to-severe COPD mainly manifests during relatively long walking bouts (>30 s) in free-living conditions. Future research should determine the underlying mechanism(s) of this impairment to facilitate the development of interventions that can improve free-living gait performance in adults with COPD

    Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease

    Get PDF
    Background: Quadriceps muscle weakness is common in chronic obstructive pulmonary disease (COPD) but is not observed in a small hand muscle (adductor pollicis). Although this could be explained by reduced activity in the quadriceps, the observation could also be explained by anatomical location of the muscle or fibre type composition. However, the abdominal muscles are of a similar anatomical and fibre type distribution to the quadriceps, although they remain active in COPD. Cough gastric pressure is a recently described technique that assesses abdominal muscle (and hence expiratory muscle) strength more accurately than traditional techniques. A study was undertaken to test the hypothesis that more severe weakness exists in the quadriceps than in the abdominal muscles of patients with COPD compared with healthy elderly controls. Methods: Maximum cough gastric pressure and quadriceps isometric strength were measured in 43 patients with stable COPD and 25 healthy elderly volunteers matched for anthropometric variables. Results: Despite a significant reduction in mean quadriceps strength (29.9 kg v 41.2 kg; 95% CI –17.9 to –4.6; p = 0.001), cough gastric pressure was preserved in patients with COPD (227.3 cm H(2)O v 204.8 cm H(2)O; 95% CI –5.4 to 50.6; p = 0.11). Conclusions: Abdominal muscle strength is preserved in stable COPD outpatients in the presence of quadriceps weakness. This suggests that anatomical location and fibre type cannot explain quadriceps weakness in COPD. By inference, we conclude that disuse and consequent deconditioning are important factors in the development of quadriceps muscle weakness in COPD patients, or that activity protects the abdominal muscles from possible systemic myopathic processes

    The Impact of Homogeneous Versus Heterogeneous Emphysema on Dynamic Hyperinflation in Patients with Severe COPD Assessed for Lung Volume Reduction

    No full text
    Dynamic hyperinflation (DH) is a pathophysiologic hallmark of Chronic Obstructive Pulmonary Disease (COPD). The aim of this study was to investigate the impact of emphysema distribution on DH during a maximal cardiopulmonary exercise test (CPET) in patients with severe COPD.This was a retrospective analysis of prospectively collected data among severe COPD patients who underwent thoracic high-resolution computed tomography, full lung function measurements and maximal CPET with inspiratory manouvers as assessment for a lung volume reduction procedure. ΔIC was calculated by subtracting the end-exercise inspiratory capacity (eIC) from resting IC (rIC) and expressed as a percentage of rIC (ΔIC %). Emphysema quantification was conducted at 3 predefined levels using the syngo PULMO-CT (Siemens AG); a difference &gt;25% between best and worse slice was defined as heterogeneous emphysema.Fifty patients with heterogeneous (62.7% male; 60.9 ± 7.5 years old; FEV1% = 32.4 ± 11.4) and 14 with homogeneous emphysema (61.5% male; 62.5 ± 5.9 years old; FEV1% = 28.1 ± 10.3) fulfilled the enrolment criteria. The groups were matched for all baseline variables. ΔIC% was significantly higher in homogeneous emphysema (39.8% ± 9.8% vs.31.2% ± 13%, p = 0.031), while no other CPET parameter differed between the groups. Upper lobe predominance of emphysema correlated positively with peak oxygen pulse, peak oxygen uptake and peak respiratory rate, and negatively with ΔIC%. Homogeneous emphysema is associated with more DH during maximum exercise in COPD patients. © 2015 A.K. Boutou, Z. Zoumot, A. Nair, C. Davey, D.M. Hansell, A. Jamurtas, M.I. Polkey, N.S. Hopkinson

    Quadriceps muscle strength in scoliosis.

    Get PDF
    Quadriceps muscle weakness is an important component of COPD. We hypothesised that quadriceps weakness would also be a feature of restrictive lung disease due to scoliosis.We studied 10 patients with severe scoliosis (median (interquartile range, IQR) FEV1 35.3 (11) % predicted), 10 patients with severe, COPD (median (IQR) FEV1 26.5 (9.0) % predicted) and 10 healthy age matched adults. We measured quadriceps strength, exercise capacity and analysed quadriceps muscle biopsies for myosin heavy chain (MyHC) isoform expression and the presence of oxidative stress.Both groups exhibited quadriceps weakness with median (IQR) maximal voluntary contraction force being 46.0 (17.0) kg, 21.5 (21.0) kg and 31.5 (11.0) kg, respectively (p=0.02 and 0.04 respectively for each patient group against controls). Oxidative stress was significantly greater in the quadriceps of both restrictive and COPD patients. The scoliosis patients exhibited a decrease in the proportion of MyHC Type I compared with controls; median (IQR) 35.3 (18.5)% compared with 47.7 (9.3)%, p=0.028. The scoliosis patients also showed an increase in MyHC IIx (median (IQR) 26.3 (15.5)% compared with 11.3 (13.0)%, p=0.01.Quadriceps weakness is a feature of severe scoliosis; the similarities between patients with scoliosis and patients with COPD suggest a common aetiology to quadriceps weakness in both conditions

    Pathways associated with reduced quadriceps oxidative fibres and endurance in COPD.

    Get PDF
    Reduced quadriceps endurance in COPD is associated with a predominance of type II glycolytic over type I oxidative fibres (fibre shift, FS) and reduced muscle energy stores. Molecular mechanisms responsible for this remain unknown. We hypothesised that expression of known regulators of type I fibres and energy production in quadriceps muscle would differ in COPD patients with and without FS.We measured lung function, physical activity, exercise performance, quadriceps strength and endurance (non-volitionally) in 38 GOLD Stage I-IV COPD patients and 23 healthy age-matched controls. Participants had a quadriceps biopsy; type I and II fibre proportions were determined using immunohistochemistry and FS defined using published reference ranges. Calcineurin A, phosphorylated adenosine monophosphate kinase-alpha (phospho-AMPK) and protein kinase A-alpha catalytic subunits were measured by western blotting and modulators of calcineurin activity, calmodulin, 14-3-3 proteins, and myocyte-enriched calcineurin-interacting protein-1 mRNA measured by western blotting and qPCR respectively. Downstream, nuclear myocyte enhancer factor-2 capable of DNA-binding was quantified by transcription factor ELISA.Unexpectedly calcineurin expression was higher, while phospho-AMPK was lower, in COPD patients with than without FS. Phospho-AMPK levels correlated with quadriceps endurance in patients.Reduced phospho-AMPK may contribute to reduced quadriceps oxidative capacity and endurance in COPD

    Progression of physical inactivity in COPD patients: The effect of time and climate conditions – A multicenter prospective cohort study

    No full text
    Purpose: Longitudinal data on the effect of time and environmental conditions on physical activity (PA) among COPD patients are currently scarce, but this is an important factor in the design of trials to test interventions that might impact on it. Thus, we aimed to assess the effect of time and climate conditions (temperature, day length and rainfall) on progression of PA in a cohort of COPD patients. Patients and methods: This is a prospective, multicenter, cohort study undertaken as part of the EU/IMI PROactive project, in which we assessed 236 COPD patients simultaneously wearing two activity monitors (Dynaport MiniMod and Actigraph GT3X). A multivariable generalized linear model analysis was conducted to describe the effect of the explanatory variables on PA measures, over three time points (baseline, 6 and 12 months). Results: At 12 months (n=157; FEV1% predicted=57.7±21.9) there was a significant reduction in all PA measures (Actigraph step count (4284±3533 vs 3533±293)), Actigraph moderate- to vigorous-intensity PA ratio (8.8 (18.8) vs 6.1 (15.7)), Actigraph vector magnitude units (374,902.4 (265,269) vs 336,240 (214,432)), MiniMod walking time (59.1 (34.9) vs 56.9 (38.7) mins) and MiniMod PA intensity (0.183 (0) vs 0.181 (0)). Time had a significant, negative effect on most PA measures in multivariable analysis, after correcting for climate factors, study center, age, FEV1% predicted, 6MWD and other disease severity measures. Rainfall was the only climate factor with a negative effect on most PA parameters. Conclusion: COPD patients demonstrate a significant decrease in PA over 1 year follow-up, which is further affected by hours of rainfall, but not by other climate considerations. © 2019 Boutou et al
    corecore